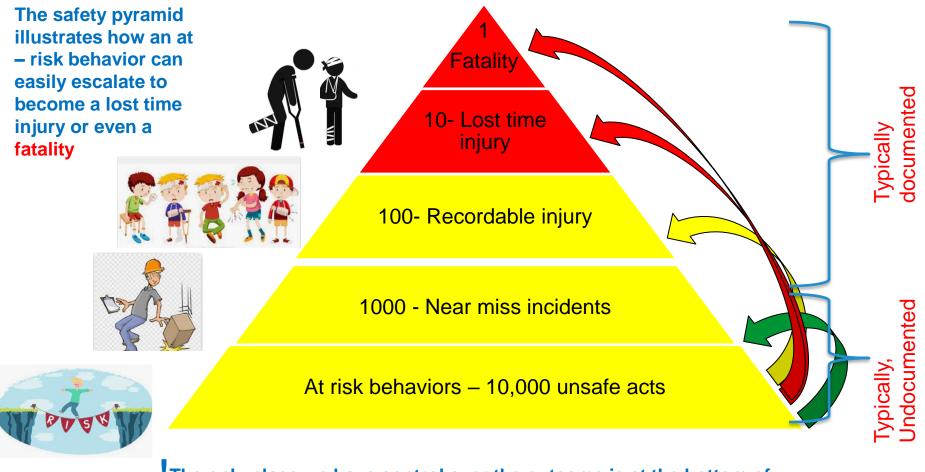


John Crane Asset Management Solutions (JCAMS)

Sasol - Improving Plant Availability whilst Reducing Total Cost of Ownership


31st May 2021

CONFIDENTIAL

William Herbert Heinrich Safety pyramid rule of thumb

The only place we have control over the outcome is at the bottom of the pyramid, when we choose to do, or allow, an at-risk behavior,

Agenda

- 1. Introduction to JCAMS
- 2. Defining Reliability & Availability
- 3. Reducing Total Cost of Ownership while Improving Availability & Reliability
- 4. How CBM can Reduce Costs and Improve Availability & Reliability
- 5. How a robust Inventory System can Reduce Costs and Improve Availability
- 6. Case Studies
- 7. Summary

Introductions

Gareth Boyd:

- Regional Business Development Manager EMEA
- o 14 years experience in global petrochemical sector
- MEA experience 5 years MEA experience previously based in Abu Dhabi, UAE, worked on projects in RSA, Botswana, Algeria.

Mike Judd:

- Technical Authority
- Background Asset Management, Reliability, Maintenance, Condition Monitoring,
 Software, and Electrical / Electronics Engineering
- >35 years experience in oil and gas, refining, power generation, defence, transportation across the complete asset lifecycle
- MEA experience Petrofac Sharjah, UAE, Qatar, Kuwait, Iraq, North & West Africa.

Introduction to John Crane Asset Management Solutions (JCAMS)

Gareth Boyd

CONFIDENTIAL

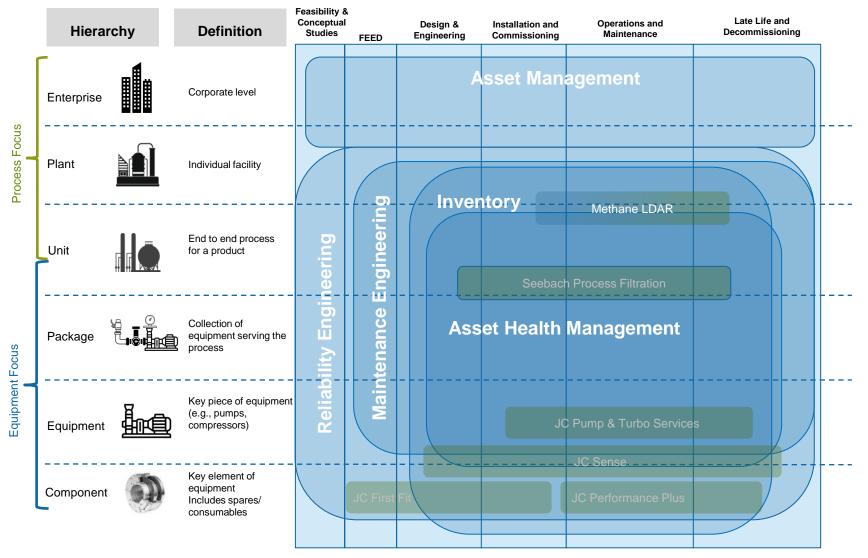
What JCAMS does

We are the Asset Management Solutions business of John Crane, providing reliability, maintenance, inventory and asset health management services across a client's entire plant

We support our customers improve equipment reliability and availability by implementation

of our data driven programs, through a combination of our consultancy, services and

Image: Non-StructureImage: Non-StructureOil & GasPetrochemicalImage: Oil & GasPetrochemicalImage: Oil & GasImage: Oil & GasPower & WaterImage: Oil & GasPower &

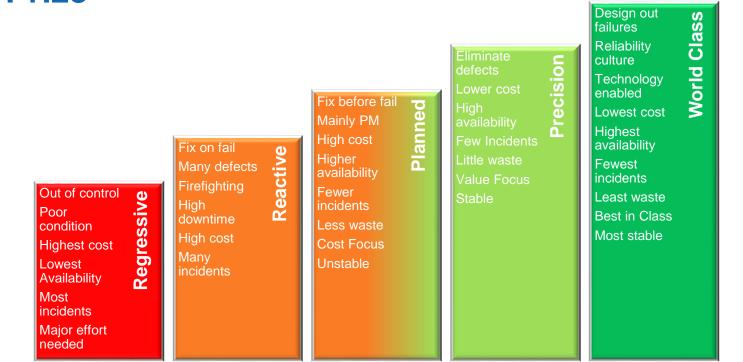

Our Markets

john crane

technology solutions.

Full Plant Reliability Support

Defining Reliability & Availability

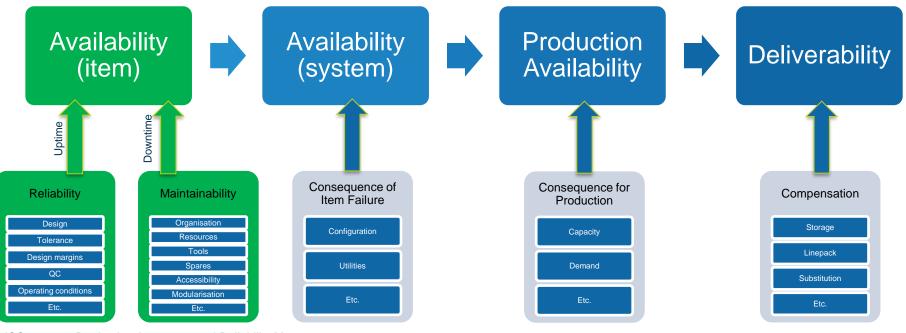


Mike Judd

The Prize

Credit: Winston P. Ledet (Dupont, Manufacturing Game), Terrence O'Hanlon (ReliabilityWeb)

Environment, Quality 20% - 45% reduction in lifecycle costs Revenue (Production) 5% improvement (e.g. 82% - 87%) in asset availability Cost 20% - 60% reduction in MRO inventory Improved Safety & Environmental performance

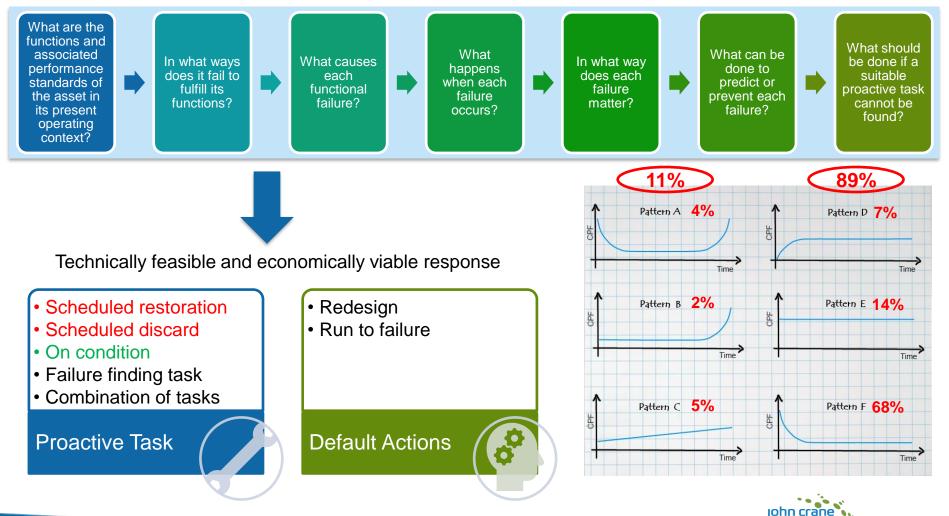

CONFIDENTIAL

John crane

Reliability Defined

The probability that an item will continue to perform its intended function without failure for a specified period of time under stated conditions

ISO 20815 – Production Assurance and Reliability Management



John crane

Reliability Centred Maintenance

Described by Nowlam and Heap in 1978 and further developed by John Moubray

Reducing Total Cost of Ownership While Improving Reliability & Availability

Gareth Boyd

What Now?

Regressive

Survival Techniques

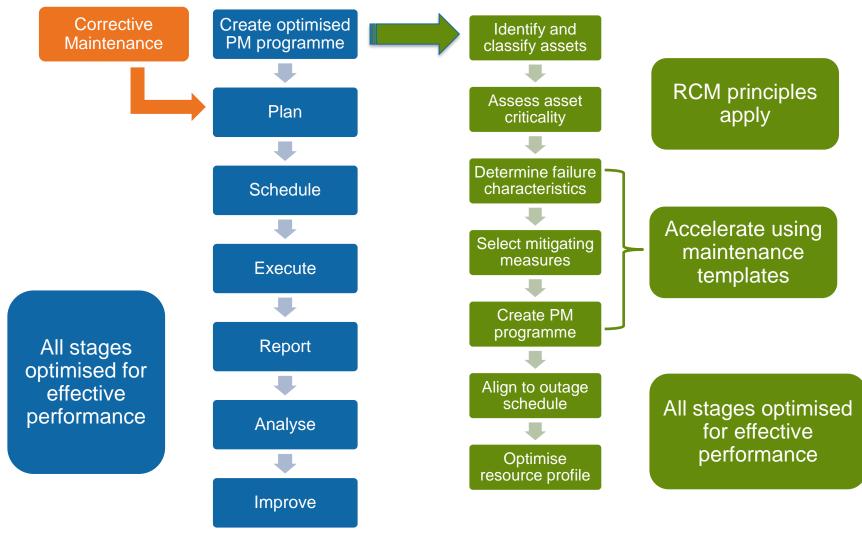
- 1.Decommission facility
- 2.Reduce facility throughput
- 3.Sell the facility to an organisation with the resources to restore sustainable performance
- 4.Increase resources deal with failures
- 5.Improve planning, scheduling, procurement, work management processes
- 6.Lower standards of performance expected

Reactive

Pursue Planned Domain

- 1.Understand that that the status quo is no longer acceptable.
- 2.Maintenance based upon RCM principles
- 3.Optimise work identification, planning, scheduling and work execution management.
- 4.Requires strong organisational structure and succession planning
- 5. Liable to revert back to reactive domain
- 6. Pursue precision domain

Planned


Pursue Precision Domain

- 1.Strong leadership
- 2.Strong business case
- 3.Establish culture of defect elimination
- 4.Empower workforce to make decisions
- 5.Maintenance based upon RCM principles
- 6.Typically requires 12 18 month implementation programme

Establishing Effective Maintenance

Our Approach – 6 Step Improvement Methodology

This approach can be applied to focus on **early cost savings** for the following categories without unduly impacting longer term objectives.

How CBM can Reduce Costs and Improve Availability & Reliability

Mike Judd

What are CBM and CM?

• Strategy or mindset in which assets are maintained based on condition, rather than time or operating hours

Condition Based Maintenance (CBM)

• Activities undertaken to determine the condition of an asset

Condition Monitoring (CM)

1. Where technically feasible and economically viable, CBM strategy has the lowest lifecycle cost

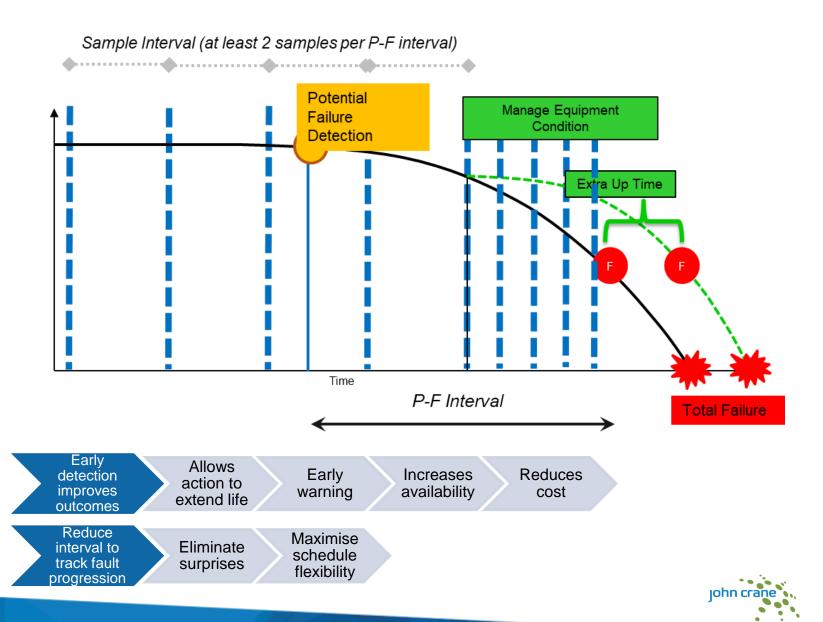
2. Provides assurance that operations can be continued safely

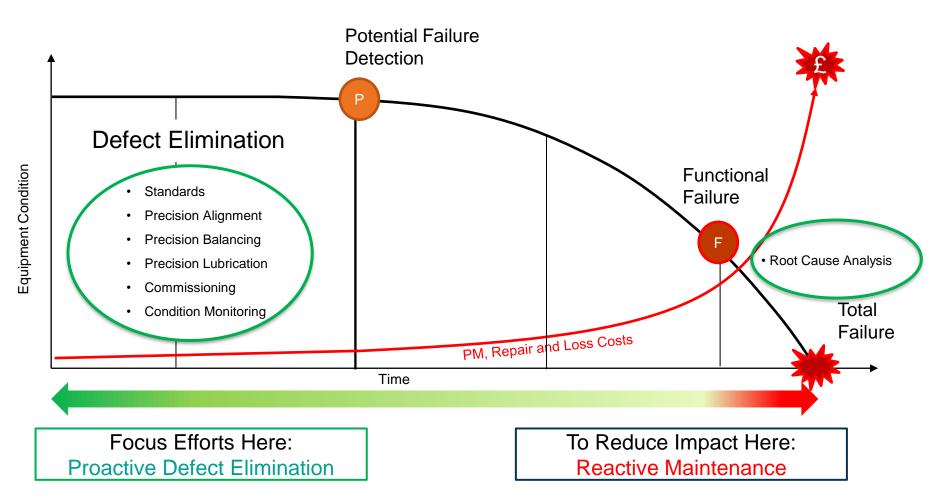
3. Helps identify and eliminate the underlying causes of defects leading to functional failure

4. Provides assurance that defect causes are not reoccurring

5. May allow reduction in inventory

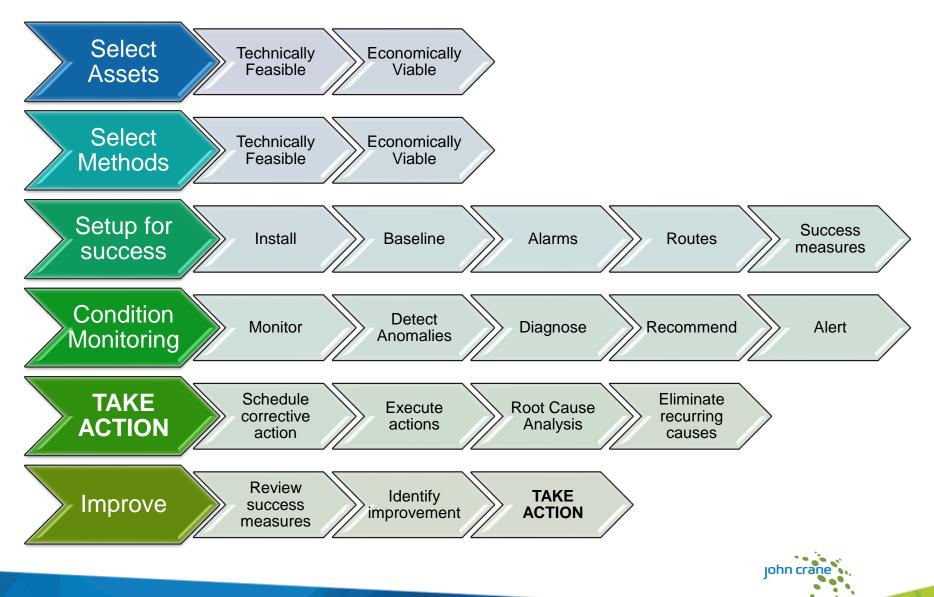
6. Detects the onset of failure early, reducing the costs of corrective action and reducing operational impacts


7. May allow an asset owner to reduce insurance premiums


CONFIDENTIAL

Benefits

Optimum Monitoring Interval

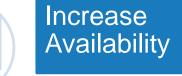


Supercharge CBM – Prevention is Better Than Cure

Increase monitoring after startup to ensure correct operation and to reduce 'infant mortality'

What Makes CBM Successful?

How CM Improves Reliability, Availability & Cost


- Support Precision Maintenance
 - Monitor post
 - commissioning
 - \circ Monitor post intervention
- Eliminate repeat failures

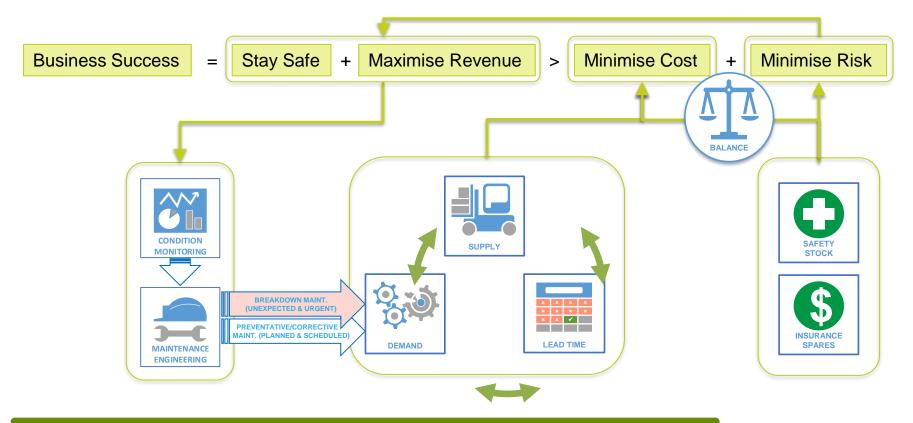
 Identify common causes
 Monitor for recurrence

- Identify faults early
- Repair only when needed
- Minimise repair scope
- Schedule action when impact is low

- Support precision
 maintenance
- Eliminate repeat failures
- · Identify faults early
- Repair only when needed
- Minimise repair scope
- Schedule action when cost is low

Increase Reliability

How a Robust Inventory System can Reduce costs and improve availability



ISO 55001

Mike Judd

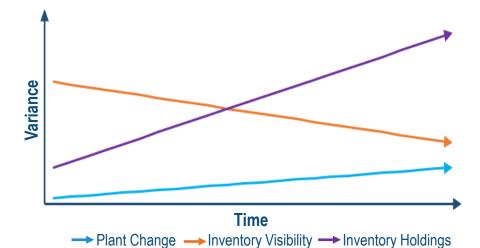
Importance of MRO inventory

Holding too little inventory risks increased downtime and reduced revenue

Holding too much inventory leads to excessive costs

Having the wrong spares adds risk and cost

Information Required to Optimise Stock Levels


1. Material Processes	2. Materials Data	3. Maintenance Data	4. Warehouse	5. Master Data
Stock/non-stockRulesStock movement	TypeMaterial MasterBOM	CriticalityFailuresMaterial use	 Returns process Repair	Materials IDVendorsClassification
6. LORA	7. Outsourcing Strategy	8. Asset Analysis	9. Inventory	10. Strategies

All elements of inventory management require accurate, up to date, consistent and controlled information

Establishing and controlling inventory processes and information is vital for managing inventory effectively

How Inventory Impacts Performance Over Time

Inventory data is often a second thought at the project stage and starts off life in poor condition

Change to the plant over time tends to further degrade data

This gives poor visibility of the true inventory position, leading to excess inventory and increased risk

This risks lower availability AND higher costs

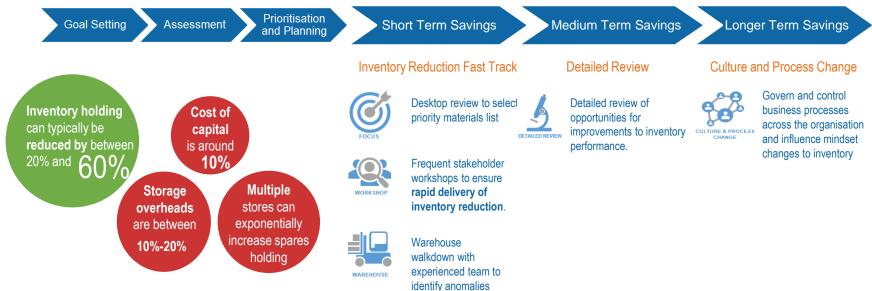
Poor visibility typically leads to **up to 60% excess inventory**

Much excess inventory is not available for use

Often critical spare parts are not held

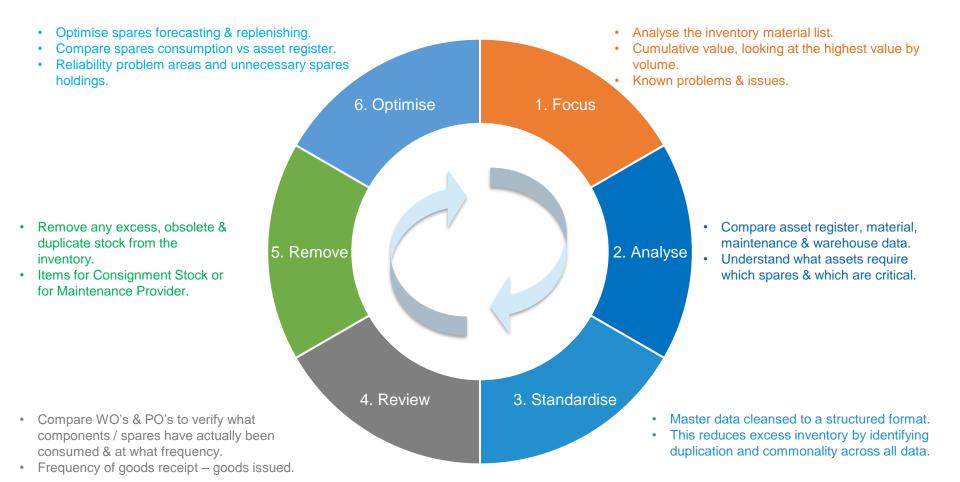
Our process drives the plant **back towards optimum spares holding.**

Typical Inventory Improvement Project


Our phased approach takes account of the current business environment by focussing on **early cost savings** without unduly impacting longer term objectives.

Maintenance – Deferral/removal of non-critical activities

Operations – Shutdown/isolation of redundant equipment

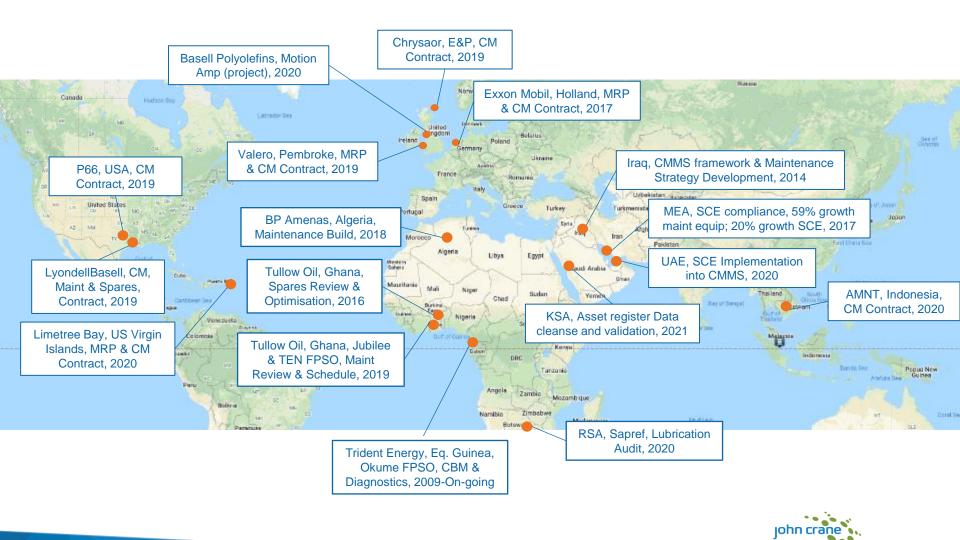

Materials - Justification to keep spares inventory

Spares Holding Optimisation Process

John crane

Case Studies

Gareth Boyd



Recent Projects

JCAMS have delivered a range of Reliability, Maintenance, CM and Inventory projects across the world

Maintenance Data Optimisation Operational Reliability Engineering

John crane

Children Descendants Search Level RS	1 I I	(i) X F	RS Tag filter				
C2© ADAD Platform C3© 001FIRE AND GAS DETECTION C3© 002ALARM AND SHUT DOWN	GRPs STBA × Review S	Description	TempBaanwing fi	ltoSystem	SCE	SCE PS Justification	EQ.
▼ C3○ 003FIRE WATER SYSTEMS							
C4@ GRP-S03Asub system - pumping & storage	R-013505	FLAME DETECTOR	FGBF00	001	Y	F20-IR Flame Detector	FGBF
♥ C5◎ A-0311 DIESEL ENG DRIVEN FIRE WTR PUMP PACKAGE	R-013506	FLAME DETECTOR	FGBF00	001	Y	F20-IR Flame Detector	FGBF
C60 FP-0311 DIESEL ENGINE FIRE PUMP CONTROLLER	R-013507	FLAME DETECTOR	FGBF00	001	Y	F20-IR Flame Detector	FGBF
► C6 P-0311FIRE WATER PUMP (DIESEL DRIVEN)	• R-013508	FLAME DETECTOR	FGBF00	001	Y	F20-IR Flame Detector	FGBF
C6□ PD-0311 DIESEL ENGINE FIRE WATER PUMP C6□ PG-0311 GEAR BOX	O R-013601	FLAME DETECTOR	FGBF00	001	Y	F20-IR Flame Detector	FGBF
COD T-0311 DIESEL DAY TANK	O R-013602	FLAME DETECTOR	FGBF00	001	Y	F20-IR Flame Detector	FGBF
C5© V-0311 FIRE WATER LIFT CAISSON	• R-013701	FLAME DETECTOR	FGBF00	001	Y	F20-IR Flame Detector	FGBF
 C5[®] V-0312 Fire water dump caisson C4[®] GRP-S03Bsub system - hydrants & hosereels (pws) 	• R-013702	FLAME DETECTOR	FGBF00	001	Y	F20-IR Flame Detector	FGBF
C4@ GRP-S03Esub system - MONTANS & HOSEREES (WS)							
C4© GRP-S03Csdb ststem - montors			FE-030010	FIREWATER RING	MAIN AD FLOW ELEMENT	FI-030010	CRTE
C40 GRP-S03Esub system - Water Mist			HCV-036114	VLV, MAN, 2" GLC	DBE FL, 16-WF-033104-AR	FI-030010	CRTE
C4() GRP-S03FSUB SYSTEM - MANIFOLDS & PIPING			HCV-036115	VIV, MAN, 2' GLO	DBE FL, 16-WF-033104-AR	FI-030010	CRTE
× *			FO-030314	FLOW ORIFICE		P-0311	CRTE
SUB SYSTEM - PUMPING & STORAGE			FO-03101	FLOW ORIFICE		P-0311	CRTE

25% Reduction in annualised maintenance man hours

\$1.6M USD in reduction in maintenance costs Reduction in safety critical backlog

Critical Spares Analysis - Materials Management

John crane

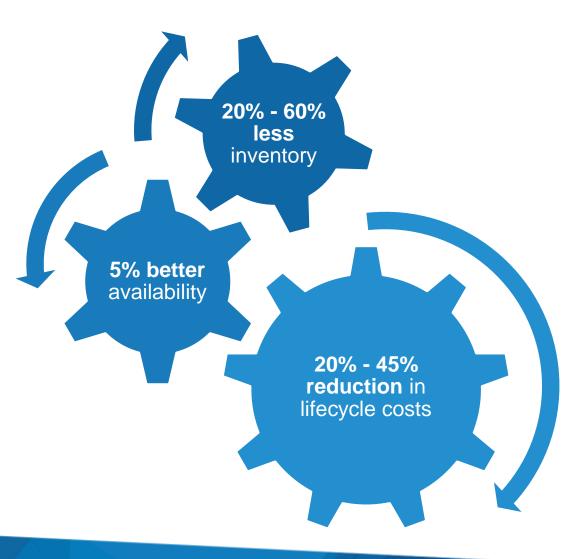
Graph	No of spares	Service level	Spares unavailability downtime	Spares unavailability risk	Failure costs per occasion	Money tied up		Write-offs & depreciation	Total Impac
÷ .		%	%	\$k/year	\$k/year	\$k/year	\$k/year	\$k/year	\$k/year
V	0	0	0.01	152.6	0	0	0	0	152.6
1	1	97.89	0	1.872	0	0.798	0.798	0.987	4.454
V	2	99.99	0	0	0	100.75 (pres dialog +		Dist Sec. 1.117	4.341
1	3	100	0	0	0	1	NESULTS: Spares strategy	1.126	5.98
1	4	100	0	0	0			1.127	7.61
V	5	100	0	0	0	1-		1.127	9.239
1	6	100	0	0	0			1.127	10.87
V	7	100	0	0	0			1.127	12.5
	8	100	-01	Witers 0	and the second	in an a	The of person	1.127	and I

Critical spares reviewed for oil export upgrade

Inventory Optimisation Software utilised

\$750K of capital freed up

Summary



The Prize

Increased Reliability & Availability, Reduced Total Cost of Ownership, Continuous Improvement

- Reliability eliminate defects through Precision to reduce failures and cost
- Maintenance ensures correct amount of effort (money) is spent in areas where it adds value – criticality focused
- Condition Monitoring is a key part of the maintenance strategy – Increasing availability and reducing costs by ensuring intervention only when necessary
- Inventory right spares at the right time and in the right condition maximises availability and minimises cost

Thank You

